Communications to the Editor

A Lewis Acid Adduct of an Alanediyl: An Aluminum(I)-Boron Donor-Acceptor Bond

John D. Gorden, Andreas Voigt, Charles L. B. Macdonald, Joel S. Silverman, and Alan H. Cowley*

Department of Chemistry and Biochemistry The University of Texas at Austin Austin, Texas 78712

Received October 1, 1999
Despite a recent surge of interest in the lower oxidation state chemistry of the group 13 elements, ${ }^{1}$ much less is known about monomeric species of the type $\mathrm{RM}(\mathrm{I})(\mathrm{M}=\mathrm{B}, \mathrm{Al}, \mathrm{Ga}, \mathrm{In})$ than the more familiar carbenes, nitrenes, and their heavier congeners. Theoretical studies ${ }^{2}$ indicate that, regardless of the nature of the substituent R, the ground state of each four-valence-electron RM(I) species is a singlet. In the particular case of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Al}$, the DFT-calculated singlet-triplet energy gap is between 67.6 and $70.9 \mathrm{kcal} / \mathrm{mol}$, depending on the basis set employed. ${ }^{3}$ Moreover, the a_{1}-symmetry HOMO of this alanediyl possesses distinctly lone pair character suggestive of potential Lewis base behavior. We report the synthesis and X-ray crystal structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Al} \rightarrow \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(\mathbf{1})$, the first example of an aluminum (I)-boron donor-acceptor bond.

The addition of toluene $(30 \mathrm{~mL})$ to a mixture of $\left[\mathrm{Al}\left(\eta^{5}-\mathrm{C}_{5}-\right.\right.$ $\left.\left.\mathrm{Me}_{5}\right)\right]_{4}^{4}\left(0.15 \mathrm{~g}, 0.93 \mathrm{mmol}\right.$ of $\mathrm{Al}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ units) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ $(0.47 \mathrm{~g}, 0.92 \mathrm{mmol})$ resulted in a yellow-colored solution. After being stirred for 16 h at room temperature, the reaction mixture was filtered, and the solvent and volatiles were removed from the filtrate to afford a purple oil from which a 40% yield of colorless crystals of $\mathbf{1}\left(\mathrm{mp} 126-129^{\circ} \mathrm{C} \mathrm{dec}\right.$) deposited over a period of days. Mass spectral data ${ }^{5}$ were consistent with the proposed Lewis acid-base adduct formulation. Moreover, the ${ }^{11} \mathrm{~B}$ NMR chemical shift for $\mathbf{1}^{5}$ fell in the tetracoordinate boron region and the ${ }^{19} \mathrm{~F}$ chemical shifts of the (equivalent) $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups ${ }^{5}$ were similar to those observed for other Lewis base complexes of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}{ }^{6}$ The ${ }^{27} \mathrm{Al}$ NMR chemical shift of the broad singlet resonance of $\mathbf{1}(\delta-59.4)$ was reasonably close to the value of δ -71.5 computed by the GAIO method, ${ }^{7}$ and the equivalence of the methyl protons was suggestive of η^{5}-attachment of the $\mathrm{Me}_{5} \mathrm{C}_{5}$

[^0]

Figure 1. Molecular structure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Al} \rightarrow \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (1) showing the atom numbering scheme. Important distances (\AA) and angles (deg): $\mathrm{Al}-\mathrm{B} 2.169(3), \mathrm{Al}-\mathrm{C}(1) 2.164(3), \mathrm{Al}-\mathrm{C}(2) 2.185(3), \mathrm{Al}-\mathrm{C}(3) 2.179-$ (3), $\mathrm{Al}-\mathrm{C}(4) 2.160(2), \mathrm{Al}-\mathrm{C}(5) 2.166(2), \mathrm{Al}-$ (ring centroid) 1.802(3), $\mathrm{B}-\mathrm{C}(11) 1.633(3), \mathrm{B}-\mathrm{C}(17) 1.634(3), \mathrm{B}-\mathrm{C}(23) 1.637(3), \mathrm{B}-\mathrm{Al}-\mathrm{X}$ (ring centroid) $172.9(1), \mathrm{C}(11)-\mathrm{B}-\mathrm{C}(17) 114.7(2), \mathrm{C}(11)-\mathrm{B}-\mathrm{C}(23)$ 111.3(2), $\mathrm{C}(17)-\mathrm{B}-\mathrm{C}(23) 113.8(2)$.
group to aluminum. ${ }^{5}$ For comparison, the ${ }^{27} \mathrm{Al}$ chemical shifts for uncoordinated monomeric $\mathrm{Al}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ and tetrameric [Al-$\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]_{4}$ are $\delta=-80$ and -150 , respectively. ${ }^{\text {1c }}$ The foregoing spectroscopic conclusions were confirmed by X-ray crystallography. ${ }^{8}$ Compound $\mathbf{1}$ crystallizes in the $P \overline{1}$ space group with $Z=2$; the solid state consists of individual molecules of the Lewis acid-base adduct (Figure 1) and there are no unusually short intermolecular contacts. The $\mathrm{C}_{5} \mathrm{Me}_{5}$ group is attached in an η^{5} fashion and ring centroid-Al-B moiety is essentially linear (172.9(1) ${ }^{\circ}$. The average $\mathrm{Al}-\mathrm{C}$ distance of 2.171(3) \AA is considerably shorter than those determined for $\mathrm{Al}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ $(2.388(7) \AA)^{9}$ and $\left[\mathrm{Al}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]_{4}(2.344 \AA) .{ }^{10}$ Such shortening

[^1]is anticipated as the aluminum lone pair is transformed into the donor-acceptor bond with the concomitant development of partial positive and negative charges on aluminum and boron, respectively. There is a very little information in the literature with which to compare the $\mathrm{Al}-\mathrm{B}$ bond distance of $\mathbf{1}(2.169(3) \AA)$. In the hydride-bridged complexes $\mathrm{Me} 3 \mathrm{NAl}\left(\eta^{2}-\mathrm{H}_{2} \mathrm{BH}_{2}\right)_{3}{ }^{11}$ and $\left[\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ -$\left.\mathrm{Ti}\left(\mu_{2}-\mathrm{H}\right)_{2}\right]_{2} \mathrm{Al}\left(\eta^{2}-\mathrm{H}_{2} \mathrm{BH}_{2}\right)^{12}$ the average $\mathrm{Al}-\mathrm{B}$ separations are 2.18(2) to $2.27(3) \AA$, respectively, while in a variety of aluminumsubstituted carboranes, these distances range from ~ 2.13 to 2.24 $\AA \AA^{13}$ A DFT calculation ${ }^{14}$ on the model compound $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ AlBH_{3} revealed that the global minimum possesses a "staggered" C_{s} geometry similar to that observed for $\mathbf{1}$ with a computed $\mathrm{Al}-\mathrm{B}$ bond distance of $2.127 \AA$. As a consequence of donor action on the part of the alanediyl, the geometry of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ changes from trigonal planar to distorted tetrahedral. The sum of bond angles at boron is $339.8(2)^{\circ}$, and to the extent that this geometrical change is a measure of the strength of the donor-acceptor interactions, it is interesting to note an almost identical sum of bond angles in $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{~PB}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} .{ }^{6 \mathrm{f}}$

The present results have a bearing on the current debate ${ }^{16}$ concerning the nature of the bonding between group 13 univalent ligands, RM , and transition metal carbonyl fragments, $\mathrm{M}^{\prime}(\mathrm{CO})_{n}$. Much of the discussion has centered on whether the bonding is of the donor-acceptor type, viz. $\mathrm{RM} \rightarrow \mathrm{M}^{\prime}(\mathrm{CO})_{n}$, or whether M^{\prime}-to-M back-bonding is important as reflected by the canonical forms $\mathrm{RM} \rightleftarrows \mathrm{M}^{\prime}(\mathrm{CO})_{n}$ and $\mathrm{RM} \leftrightarrows \mathrm{M}^{\prime}(\mathrm{CO})_{n}$. The isolation of $\mathbf{1}$ proves that an alanediyl can function as a pure donor ligand because there is no question of back-bonding in this particular case. Moreover, the experimental structural parameters and the DFT computed charge distribution and orbital occupancy for the alanediyl fragment of $\mathbf{1}^{3}$ are very similar to those of the terminal alanediyl transition metal complexes $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{AlFe}(\mathrm{CO})_{4}$ (av $\mathrm{Al}-\mathrm{C}=2.147(8) \AA)^{17}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{AlCr}(\mathrm{CO})_{5}(\mathrm{av} \mathrm{Al}-\mathrm{C}=$

[^2]

Figure 2. Molecular structure of $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Al}\left(\eta^{3}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ (2) showing the atom numbering scheme. Important distances (\AA)) and angles (deg): Al$\mathrm{C}(1) 2.018(3), \mathrm{Al}-\mathrm{C}(11) 1.672(3), \mathrm{Al}-\mathrm{C}(12) 2.067(3), \mathrm{C}(1)-\mathrm{Al}-\mathrm{C}(1)^{*}$ 103.5(2), C(11)-Al-C(12) 46.09(13).
$2.183(2) \AA),{ }^{10}$ suggesting the existence of the same donoracceptor bonding mode in both cases.

Interestingly, when $\left[\mathrm{Al}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\right]_{4}$ was treated with $\operatorname{In}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ using the same procedure as that described above for the $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ reaction, the product was colorless, crystalline $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Al}\left(\eta^{3}-\mathrm{C}_{5}-\right.$ Me_{5}) (2) (mp $158{ }^{\circ} \mathrm{C}$). The proposed formulation for 2 was consistent with mass spectral data ${ }^{5}$ and the presence of $\mathrm{C}_{6} \mathrm{~F}_{5}$ and $\mathrm{C}_{5} \mathrm{Me}_{5}$ groups was evident from ${ }^{19} \mathrm{~F}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopic data; ${ }^{5}$ however, to establish for example the hapticity of the cyclopentadienyl ring it was necessary to perform an X-ray crystal structure. ${ }^{8}$ Individual molecules of 2 crystallize in the orthorhombic space group Pnma with $Z=4$; there are no unusually short intermolecular contacts (Figure 2). The $\mathrm{C}_{5} \mathrm{Me}_{5}$ group is attached to aluminum in an η^{3} fashion, a coordination mode that has been seen previously only in the case of the dimers $\left[\left(\eta^{3}-\mathrm{C}_{5}\right.\right.$ $\left.\left.\mathrm{Me}_{5}\right)(\mathrm{R}) \mathrm{Al}-\eta-\mathrm{Cl}\right]_{2}(\mathrm{R}=\mathrm{Me}, i-\mathrm{Pr}) .{ }^{18} \mathrm{The} \mathrm{Al}-\mathrm{C}(11)$ and $\mathrm{Al}-\mathrm{C}(12)$ distances are $1.672(3)$ and $2.067(3) \AA$, respectively while the Al(1)... $\mathrm{C}(13)$ distance is $2.687 \AA$. The $\mathrm{Al}-\mathrm{C}(1)$ distance of $2.018-$ (3) \AA in $\mathbf{2}$ is slightly longer than those in the THF $(1.995(3) \AA),{ }^{19}$ benzene $(1.979(7) \AA),{ }^{20}$ and toluene $(1.984(2) \AA)^{20}$ complexes of $\mathrm{Al}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. It is possible that 2 was produced via $\mathrm{C}_{6} \mathrm{~F}_{5}$ transfer from the adduct $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Al} \rightarrow \operatorname{In}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$. Such a view would be consistent with the modest $\mathrm{In}-\mathrm{C}$ bond energy and the relative stability of the $\operatorname{In}(\mathrm{I})$ oxidation state.

Acknowledgment. We are grateful to the National Science Foundation and the Robert A. Welch Foundation for support.

Supporting Information Available: X-ray experimental details with positional parameters and full bond distances and angles for $\mathbf{1}$ and $\mathbf{2}$ and a summary of the DFT calculations (PDF). An X-ray crystallographic file, in CIF format is also available. This material is available free of charge via the Internet at http://pubs.acs.org.

JA993537P

(18) Shonberg, P. R.; Paine, R. T.; Campana, C. F. J. Am. Chem. Soc. 1979, 101, 7726; Schonberg, P. R.; Paine, R. T.; Campana, C. F.; Duesler, E. N. Organometallics 1982, 1, 799.
(19) Belgardt, T.; Storre, J.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G. Inorg. Chem. 1995, 34, 3821.
(20) Hair, G. S.; Cowley, A. H.; Jones, R. A.; McBurnett, B. G.; Voigt, A. J. Am. Chem. Soc. 1999, 121, 4922.

[^0]: (1) See, for example: (a) Brothers, P. J.; Power, P. P. Adv. Organomet. Chem. 1996, 39, 1. (b) Uhl, W. Angew. Chem., Int. Ed. Engl. 1993, 32, 1386. (c) Dohmeier, C.; Loos, D.; Schnöckel, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 129.
 (2) For alanediyls, see (a) Ahlrichs, R.; Ehrig, M.; Horn, H. Chem. Phys. Lett. 1991, 183, 227. (b) Schneider, U.; Ahlrichs, R.; Horn, H.; Schäfer, A. Angew. Chem., Int. Ed. Engl. 1992, 31, 353. (c) Gauss, J.; Schneider, U.; Ahlrichs, R.; Dohmeier, C.; Schnöckel, H. J. Am. Chem. Soc. 1993, 115, 2402. (d) Purath, A.; Dohmeier, C.; Ecker, A.; Schnöckel, H. Organometallics 1998, 17, 1894.
 (3) Macdonald, C. L. B.; Cowley, A. H. J. Am. Chem. Soc. 2000, in press.
 (4) Prepared by the method of Schulz, S.; Roesky, H. W.; Koch, H. J.; Sheldrick, G. M.; Stalke, D.; Kuhn, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1729.
 (5) 1: MS (CI, $\left.\mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z} 675(0.93 \%)[\mathrm{M}+\mathrm{H}]^{+} ; 512(66.98 \%)\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}\right]^{+}$; $164(2.02 \%)\left[\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{AlH}_{2}\right]^{+}$. HRMS (CI, $\left.\mathrm{CH}_{4}\right)$ calcd for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{AlBF}_{14}$, 655.0859 ; found $655.0884 .{ }^{1} \mathrm{H}$ NMR ($300.00 \mathrm{MHz}, 295 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.39$ (s, $\left.15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.72 \mathrm{MHz}, 295 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-127.2\left(\mathrm{~s}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, $\delta-154.9\left(\mathrm{~s}, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right), \delta-159.8\left(\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right) .{ }^{11} \mathrm{~B}$ NMR $(96.28 \mathrm{MHz}, 295 \mathrm{~K}$, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-32.9(\mathrm{~s}) .{ }^{27} \mathrm{Al}$ NMR ($78.21 \mathrm{MHz}, 295 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-59.4(\mathrm{br}$, $\left.\mathrm{w}_{1 / 2}=1564 \mathrm{~Hz}\right) .2: \mathrm{MS}\left(\mathrm{CI}, \mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{z} 496$ (17.95\%) $\left(\mathrm{M}^{+}\right) ; 477$ (36.71%) $\left.[\mathrm{M}-\mathrm{F}]^{+} 329(100 \%)\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}$. HRMS $\left(\mathrm{CI}, \mathrm{CH}_{4}\right.$ calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{AlF}_{10}$, 496.0829; found $496.0817 .{ }^{1} \mathrm{H}$ NMR (300.00 MHz), $295 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.63(\mathrm{~s}$, $\left.15 \mathrm{H}, \mathrm{C}_{5} \mathrm{Me}_{5}\right) .{ }^{19} \mathrm{~F}$ NMR ($282.78 \mathrm{MHz}, 295 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-119.0\left(\mathrm{~s}, m-\mathrm{C}_{6} \mathrm{~F}_{5}\right)$, $\delta-149.0\left(s, p-\mathrm{C}_{6} \mathrm{~F}_{5}\right),-155.8\left(\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{~F}_{5}\right) .{ }^{27} \mathrm{Al}$ NMR (78.21 MHz, 295 K , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 57.6\left(\mathrm{br}, \mathrm{w}_{1 / 2}=4505 \mathrm{~Hz}\right)$.

[^1]: (6) For a selection of structurally characterized donor adducts of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$, see: (a) Bradley, D. C.; Hursthouse, M. B.; Motevalli, M.; Zheng, D. H. J. Chem. Soc., Chem. Commun. 1991, 7. (b) Röttger, D.; Erker, G.; Fröhlich, R.; Kotila, S. J. Organomet. Chem. 1996, 518, 17. (c) Bradley, D. C.; Harding, I. S.; Keefe, A. D.; Motevalli, M.; Zheng, D. H. J. Chem. Soc., Dalton Trans. 1996, 3931. (d) Parks, D. J.; Piers, W. J. Am. Chem. Soc. 1996, 118, 9440. (e) Parks, D. J.; Piers, W.; Parvez, M.; Atencio, R.; Zaworotko, M. J. Organometallics 1998, 17, 1369. (f) Jacobsen, H.; Berke, H.; Döring, S.; Kehr, G.; Erker, G.; Fröhlich, R.; Meyer, O. Organometallics 1999, 18, 1724.
 (7) Ditchfield, R. Mol. Phys. 1974, 27, 789; Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 122, 8251. This single-point calculation employed the X-ray crystal structure parameters for 1 .
 (8) Crystal data for 1: $\mathrm{C}_{28} \mathrm{H}_{15} \mathrm{AlBF}_{15}$, triclinic, $P 1, a=9.534(2) \mathrm{A}, b=$ 9.902(2) $\AA, c=15.658(3) \AA, \alpha=91.04(3), \beta=104.10(3), \gamma=105.93(3)^{\circ}$, $V=1372.9(5) \AA^{3}, Z=2, D_{\text {calcd }}=1.631 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo} \mathrm{K} \alpha) 0.195 \mathrm{~mm}^{-1} . \mathrm{A}^{\prime}$ suitable single of $\mathbf{1}$ was covered with mineral oil and mounted on a NoniusKappa CCD diffractometer at 153 K . A total of 11088 independent reflections were collected in the range $5.9<2 \theta<55.0^{\circ}$ using Mo K α radiation ($\lambda=$ $0.71073 \AA$). Of these, 6252 were considered observed ($I>2.0 \sigma(I)$) and were used to solve (direct methods) and refine (full-matrix, least-squares on F^{2}) the structure of $\mathbf{1} ; w R 2=0.1372, \mathrm{R}=0.0549$. Crystal data for 2: $\mathrm{C}_{22} \mathrm{H}_{15^{-}}$ AlF_{10}, orthorhombic, Pnma, $a=9.049(2) \AA, b=19.160(4) \AA, c=11.902(2)$ $\AA, V=2063.6(7) \AA^{3}, Z=4, D_{\text {calcd }}=1.598 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Mo} \mathrm{K} \alpha) 0.195 \mathrm{~mm}^{1}$. A suitable single crystal of $\mathbf{2}$ was covered with mineral oil and mounted on a Nonius-Kappa CCD diffractometer at 153 K. A total of 4469 independent reflections were collected in the range $6.04<2 \theta<73.32^{\circ}$ using Mo K α radiation $(\lambda=0.71073 \AA)$. Of these, 2435 were considered observed ($I>2.0$ $\sigma(I)$) and were used to solve (direct methods) and refine (full-matrix, leastsquares on F^{2}) the structure of $\mathbf{2} ; \mathrm{wR} 2=0.1948, \mathrm{R}=0.0684$.
 (9) Haaland, A.; Kjell-Gunnar, M.; Shlykov, S. A.; Volden, H. V.; Dohmeier, C.; Schnöckel, H. Organometallics 1995, 14, 3116.
 (10) Yu, Q.; Purath, A.; Donchev, A.; Schnöckel, H. J. Organomet. Chem. 1999, 584, 94.

[^2]: (11) Bailey, N. A.; Bird, P. H.; Wallbridge, M. G. H. Inorg. Chem. 1968, 7, 1575.
 (12) Sizov, A. I.; Molodnitskaya, I. V.; Bulychev, B. M. Bel'skii, V. K.; Soloveichik, G. L. J. Organomet. Chem. 1988, 344, 185.
 (13) See, for example, Schubert, D. M.; Bandman, M. A.; Rees, W. S., Jr.; Knobler, C. B.; Lu, P.; Nam, W.; Hawthorne, M. F. Inorg. Chem. 1990, 9, 2046.
 (14) All BP86 ${ }^{15}$ calculations were performed using the Gaussian 94 (revision B2) suite of programs. All-electron basis sets were used for C, H, F. (6-31G (d)) and the group 13 elements $(6-31+G(d))$. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; AlLaham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, revision B2; Gaussian, Inc.: Pittsburgh, PA, 1995.
 (15) Becke, A. D. Phys. Rev. 1988, 38, 3098; Perdew, J. P. Phys. Rev. 1986, 33, 8822.
 (16) (a) Su, J.; Li, X.-W.; Crittendon, C.; Campana, C. F.; Robinson, G. H. Organometallics 1997, 16, 4511. (b) Cotton, F. A.; Feng, X. Organometallics 1998, 17, 128. (c) Boehme, C.; Frenking, G. Chem. Eur. J. 1999, 5, 2184. (d) Chem. Eng. News March 16, 1998, p 31 and August 2, 1999, p 23. (17) Weiss, J.; Stetzkamp, D.; Nuber, B.; Fischer, R. A.; Boehme, C.; Frenking, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 70.

